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A STUDY OF THE PILOT'S ABILITY TO CONTROL AN APOLLO TYPE 

VEHICW DURING ATMOSPHERE ENTRY 

By Rodney C .  Wingrove, Glen W .  S t inne t t ,  and Robert C .  Innis 

Ames Research Center 
Moffett Field,  C a l i f .  

SUMMARY 

Studies have been conducted on the manual control  during en t ry  of a space 
vehicle i n t o  the  ea r th ' s  atmosphere a t  parabolic ve loc i t i e s .  These s tudies  
were conducted on a centrifuge where the  p i l o t  experienced t h e  accelerat ion 
forces  associated with the  simulated f l i g h t .  The p i l o t  t asks  i n  t h i s  study 
included (1) control  t o  various accelerat ion leve ls ,  (2)  control  of range with 
various displays and various modes of short-period s t a b i l i t y  augmentation, and 
(3)  monitoring and recovery procedures. 

The p i l o t  control  t o  maintain a constant l e v e l  of accelerat ion between 
2 and 6 g w a s  characterized by small "hunting" osc i l l a t ions  about t he  desired 
accelerat ion l eve l .  Control t o  the  3 g l e v e l  w a s  found sa t i s fac tory  and 
allowed the  best  control  response i n  terms of avai lable  l i f t  force.  This 
appears t o  be a simple control  procedure t h a t  can be used i n  emergency 
s i tua t ions .  

The more sophisticated task  of control l ing range w a s  shown t o  represent 
a sixth-order p i l o t  control  function. This study documents t he  var ia t ions  of 
the p i l o t ' s  a b i l i t y  t o  control  t h i s  system with various lead information. It 
w a s  found t h a t  displays which give only basic ve loc i ty  and range-to-go infor- 
mation were unsatisfactory fo r  normal operation; whereas those t h a t  gave roll 
r a t e  or roll command information were found sa t i s fac tory .  Removing the  
short-period s t a b i l i t y  augmentation increased the  p i l o t  control  tasks  but did 
not s ign i f icant ly  a f f ec t  the  p i l o t ' s  a b i l i t y  t o  a t t a i n  the  desired dest inat ion 

A p i l o t ' s  task of monitoring the  t r a j ec to ry  f o r  an undesired skip out of 
t he  atmosphere w a s  simulated. Successful t r a n s i t i o n  f r o m  the  uncontrolled 
skip- out t r a j e c t o r i e s  i n t o  other controlled t r a j e c t o r i e s  w a s  documented. 

INTRODUCTION 

This report  invest igates  t he  a b i l i t y  of a p i l o t  t o  control  a f ixed trim 
capsule during atmosphere entry upon re turn  of a manned lunar mission. The 
vehicle roll angle, used fo r  t r a j ec to ry  control,  must be varied i n  such a 
manner t h a t  the vehicle does not skip uncontrolled out of t he  atmosphere or 
exceed a given accelerat ion l i m i t .  
l a t ed  t o  guide t h e  vehicle t o  the  desired dest inat ion.  The p i l o t ' s  function 

I n  addition, t he  roll angle must be regu- 



during en t ry  i s  t o  monitor t he  performance of t he  primary guidance system 
(on-board computer and i n e r t i a l  platform) and short-period augmentation system 
(rate gyros, react ion jets,  e t c . ) .  In  t h e  event of malfunctions i n  t h i s  
equipment, t h e  p i l o t  m u s t  be able  t o  assume cont ro l  of t h e  vehicle through 
t h e  use of back-up display information and/or back-up control  systems. 

Previous simulator studies for t h i s  type of en t ry  ( r e f s .  1 t o  5 )  indi-  
cated t h a t  a p i l o t  can s a t i s f a c t o r i l y  cont ro l  t h e  short-period dynamics if  the  
vehicle has a r t i f i c i a l  s t a b i l i t y  augmentation. Without short-period s t a b i l i t y  
augmentation (ref.  1) t h e  control  w a s  considered acceptable only fo r  emergency 
operations. 
and 3 and pa r t i cu la r  guidance display arrangements were developed. The stud- 
ies  indicated successful par t ic ipa t ion  of t h e  p i l o t  i n  en t ry  control,  but did 
not systematically analyze which display and cont ro l  f ac to r s  enable the  p i l o t  
t o  perform the  en t ry  tasks .  It i s  t h e  purpose of t he  present study t o  i l l u s -  
trate the  e f f ec t  of various arrangements of display and control  parameters on 
the  p i l o t ' s  a b i l i t y  t o  perform the  desired control  functions during entry.  
This study invest igates  t h e  in te rac t ion  of t he  short-period control  with t h e  
t r a j ec to ry  control,  and a l s o  invest igates  new p i l o t  monitoring tasks  and emer- 
gency control  procedures. The results of t h i s  study are intended t o  show the  
p i l o t ' s  a b i l i t y  t o  perform the  entry with progressive Tailures i n  t he  primary 
guidance and cont ro l  system. 

P i l o t  control  of t h e  t r a j ec to ry  w a s  considered i n  references 2 

I n  t h i s  study the  Ames five-degrees-of-freedom simulator i s  used t o  give 
the  p i l o t  motion cues during the  simulated e n t r i e s .  The closed-loop operation 
of t he  simulator gives t h e  three angular accelerat ions and l i nea r  accelerat ion 
l eve l s  up t o  6 g .  

NOTATION 
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mass of vehicle,  slugs 

dynamic pressure, l b / f t 2  

d i f f e r e n t i a l  operat or notat  ion 

time, sec 

t o t a l  veloci ty ,  f t / s ec  

c i rcu lar  o rb i t  veloci ty ,  f t / s e c  

vehicle weight, l b  

range t o  dest inat ion,  miles 

angle of a t tack,  deg 

f l igh t -pa th  angle r e l a t i v e  t o  l o c a l  horizontal  direct ion,  deg 

vehicle r o l l  angle, deg 

c o m n d e  d value 

value along constant trim equilibrium gl ide t r a j ec to ry  

i n i t i a l  value 

with respect t o  zero r o l l  angle 

der ivat ive with respect t o  time 

SIDIUIATION DETAILS 

entry vehicle chosen fo r  t h i s  study w a s  a l i f t i n g  capsule similar t o  
the  Apollo configuration: (L/D), = 0.48, W/C+ = 50 psf trimmed t o  CL = -30' 
by of fse t t ing  the  vehicle center of grav i ty .  

Control of t he  vehicle w a s  maintained through the  use of simulated reac- 
t i o n  control  systems which were an  on-off type with a maximum angular accel- 
e ra t ion  capabi l i ty  of 10°/sec2 about each of the  three body axes.  
control  consisted of a three-axis  side-arm s t i c k .  Figure 1 i l lustrates  two 
modes of control l ing the  vehicle .  W. :I t he  s t a b i l i t y  augmentation mode 
( f i g .  l ( a ) ) ,  there  w a s  a l inear re la t ionship  between t h e  s t i ck  def lect ion and 
t h e  commanded angular rate, with a maximum of 20°/sec r a t e  avai lable  with ful l  
s t i ck  def lect ion.  I n  t h i s  mode, angular rate feedback i s  used t o  damp the  
ac tua l  rate t o  within +lO/sec of t he  commanded value. When the  s t a b i l i t y  
augmentation mode w a s  not used ( f i g .  l ( b ) ) ,  t he  react ion control  je ts  w e r e  
act ivated whenever the  s t i ck  def lect ion became greater  than one-third of f u l l  
t r a v e l .  

The p i lo t ' s  
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The p i l o t ' s  display used i n  t h i s  study i s  shown i n  f igure  2.  The display 
consisted of t he  following : 

1. 
2. 
3. 
4. 
5 .  
6. 
7. 
8 .  
9 .  
10. 

A three-axes horizon-ball  indicator  
A yaw r a t e  meter 
A p i t ch  rate m e t e r  
A roll angle e r ro r  meter 
An accelerat ion rate and accelerat ion-rate  command meter 
An accelerat ion and accelerat ion command meter 
A ve loc i ty  and veloci ty  command meter 
A crossrange indicator  
A scope display 
A clock 

The equations of motion were programmed on an analog computer t o  describe 
the  vehicle with s i x  degrees of freedom over an a l t i t u d e  range of 3OO,OOO t o  
100,000 f e e t .  The accelerat ions encountered during atmosphere en t ry  were s i m -  
u la ted by the  Ames five-degrees-of-freedom motion simulator, shown schemati- 
ca l ly  i n  f igure 3 and described i n  reference 6. Simulated en t r i e s  made with 
the  motion devices operating are re fer red  t o  as dynamic runs; those with no 
accelerat ion or motion cues are referred t o  as fixed-base runs.  Figure 4 
i l l u s t r a t e s  the  motions imposed upon the  p i l o t  during a dynamic run. I n  
s t a r t i ng  a dynamic run on the  simulator t h e  a r m  w a s  brought up t o  10 rpm and 
the  inner p i t ch  gimbal w a s  rotated 45' thereby impressing on the  p i l o t  an 
accelerat ion vector of 1.414 g i n  an "eyeballs-in" d i rec t ion .  
then driven i n  response t o  the  vehicle accelerat ion as computed from the  equa- 
t i ons  of motion. The three  gimbals of the  cab were driven through an appro- 
p r i a t e  coordinate transformation t o  or ien t  t he  vehicle accelerat ion vector 
properly with respect t o  the  p i l o t .  The roll, pi tch ,  and yaw angular accel-  
erat ions were a l s o  imposed on the  p i l o t  by gimbal motion computed i n  a coordi- 
nate transformation. 

The a r m  w a s  

Three NASA t e s t  p i l o t s ,  each highly experienced i n  f ly ing  a i r c r a f t  and 
space-fl ight simulators, were used as subjects fo r  these t e s t s .  Pr ior  t o  the  
dynamic runs, the  p i l o t s  made fixed-base runs t o  famil iar ize  themselves with 
the  control  task  and control  system. During each dynamic run, the  subjects  
were asked t o  coment on the  control problems encountered and t o  r a t e  t h e i r  
a b i l i t y  t o  perform the  control  tasks  according t o  the  Cooper r a t ing  scale  
( r e f .  7) shown i n  t ab le  I. 
taken during the  simulated en t r ies ,  provide the  data fo r  t he  following 
discussions.  

These observations, along with t h e  recorded data 

VEHICLE DYNAMICS 

The dynamics of t he  entry vehicle w i l l  be outlined b r i e f l y  before the  
simulation r e s u l t s  a r e  discussed. The en t ry  t r a j ec to ry  dynamics associated 
with the  r o l l  control  system w i l l  be discussed f i r s t .  
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Roll Control and Trajectory Dynamics 

Figure 5 i s  a simplified block diagram showing the  relat ionship between 
vehicle roll control  and range control .  The diagram depicts  range var ia t ion  
i n  only the  v e r t i c a l  plane. This f igure shows the  chain of events t h a t  r e su l t  
f rom the application of a r o l l  control  moment by the  reac t ion  je t s .  The r o l l  
control  je ts  produce a torque about the  r o l l  axis which i s  integrated ( f i g .  5 )  
t o  produce a roll rate. An in tegra t ion  of t he  roll r a t e  r e s u l t s  i n  changes 
i n  the  roll angle. The control  of the  r o l l  angle i s  a pa r t  of t he  vehicle 
"short-period dynamics." 
change i n  r o l l  angle i s  termed the  "long-period" or t r a j ec to ry  dynamics. 

The dynamic response of the  system which follows a 

The roll angle determines the  component of t he  aerodynamic l i f t  force 
vector i n  the  v e r t i c a l  plane.  The integrated changes i n  t h i s  v e r t i c a l  l i f t  
force determines the  changes i n  t h e  vehicle rate of climb. Integrat ing t h i s  
v e r t i c a l  veloci ty  determines the changes i n  the  vehicle a l t i t u d e  and conse- 
quently the  changes i n  drag accelerat ion.  The subsequent in tegra t ion  of drag 
accelerat ion determines changes i n  horizontal  veloci ty ,  and a f i n a l  integra- 
t i o n  determines the subsequent changes i n  the  downrange. 

Figure 5 i l l u s t r a t e s  t h a t  a p i l o t  guiding t o  a given point on ea r th  i s ,  
i n  e f fec t ,  control l ing a sixth-order function. With an on-board computer and 
i n e r t i a l  platform, the  t r a j ec to ry  posi t ion and veloci ty  information can be 
accurately determined during entry,  and guidance logic  equations within the  
computer can determine the  proper r o l l  angle required t o  reach the  destination. 
Either an autopi lot  or the  p i l o t ,  using a r o l l  angle display,  can follow t h i s  
r o l l  angle command t o  guide t o  t h e  desired dest inat ion.  If the  primary guid- 
ance system should f a i l  though, t he  p i l o t  must determine the  proper r o l l  angle 
through the  use of back-up display information.  One simple method of emer- 
gency control  investigated i n  t h i s  study i s  fo r  t he  p i l o t . t o  f l y  a t  a constant 
accelerat ion.  The p i l o t  needs only simple measurements of accelerat ion and 
horizon roll angle t o  perform t h i s  t a sk .  This method provides a safe entry 
but not accurate range control .  To determine the  information required by the  
p i l o t  t o  guide t o  the  dest inat ion,  a progressive arrangement of display infor- 
mation w a s  investigated.  The study showed how the  p i l o t ' s  performance varied 
with d i f fe ren t  amounts of lead information. 

P i tch  and Yaw Dynamics and Control 

The dynamics of t he  vehicle p i t c h  and yaw modes are characterized by 
short-period osc i l la t ions  r e su l t i ng  from the  posi t ive s t a t i c  s t a b i l i t y  of the  
vehicle.  
dynamic pressure or corresponding vehicle accelerat ion.  For t he  par t icu lar  
configuration i n  t h i s  study, t h e  highest p i t ch  and yaw osc i l l a t ions  were 
0.55 cps at  6 g.  

During en t ry  t h i s  o sc i l l a t ion  frequency i s  pr imari ly  a function of 

Random disturbances were introduced as shown i n  f igure  6 t o  give a real-  
i s t i c  p i l o t  control  t a sk .  
input about t h e  p i t ch  and yaw a x i s ) ,  it i s  seen t h a t  the  osc i l l a t ions  increase 

Without s t a b i l i t y  augmentation (and with no p i l o t  
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i n  magnitude t o  about +20°/sec a t  the  end of t he  t r a j ec to ry .  
cont ro l  t a sk  about t h e  p i t ch  and yaw axes then w a s  t o  keep these angular r a t e s  
small (within +2'/sec). 

The p i l o t  

There i s  s igni f icant  geometric coupling between t h e  r o l l  and yaw degrees 
of freedom because the  vehicle rolls about t he  wind axis which i s  incl ined 
30' t o  t he  symmetrical body ax i s .  Therefore, t o  minimize the  influence of 
t h i s  coupling, t he  yaw rate displayed t o  the  p i l o t  and the  yaw rate s igna l  
used i n  the  s tabi l i ty  augmentation system were computed from t h e  body axis 
yaw and r o l l  rates according t o  the  following equation: 

yaw rate s igna l  = (yaw rate)body axis -t t a n  30' X ( r o l l  rate)body axis 

The p i t ch  rate and r o l l  r a t e  s ignals  were those computed on the  respective 
body axes. 

RESULTS AND DISCUSSION 

The r e s u l t s  of t h i s  study are presented i n  three  p a r t s .  The f i r s t  p a r t  
The discusses the  p i l o t ' s  a b i l i t y  t o  control t o  a given accelerat ion leve l .  

second section i s  concerned with the e f f ec t  on the  p i l o t ' s  a b i l i t y  t o  control  
range with the  guidance information displayed. (Various modes of s t a b i l i t y  
augmentation as w e l l  as various guidance display arrangements a re  discussed.) 
Final ly ,  the t h i r d  p a r t  discusses a simple p i l o t  monitoring system designed 
t o  insure that the  vehicle w i l l  not inadvertently skip out of t he  atmosphere. 
This monitoring system was evaluated and r e s u l t s  were obtained with the  p i l o t  
maneuvering (or  t rans i t ion ing)  from an undesired skip-out t r a j ec to ry  t o  a safe 
t r a j ec to ry .  

P i lo t  Control of Acceleration Level 

For t h i s  series of runs the  p i l o t  w a s  asked t o  control  t o  a specif ied 
constant accelerat ion l e v e l  between 2 and 6 g .  
of an accelerat ion indicator  and an a t t i t u d e  indicator .  Vehicle s t a b i l i t y  
augmentation- w a s  used f o r  t h i s  s e r i e s  of runs s o  there  w a s  e s sen t i a l ly  no con- 
t r o l  t ask  about t he  p i t c h  or yaw axes. 

The p i l o t  display consisted 

\ 
Figure 7 i l l u s t r a t e s  t yp ica l  pi lot-control led t r a j e c t o r i e s .  During the  

i n i t i a l  dive in to  the  atmosphere the  p i l o t  held r o l l  angle near zero u n t i l  
t he  r a t e  of build-up i n  accelerat ion could be determined. If the  accelerat ion 
w a s  increasing too fast (such as fo r  the  steep entry,  Y i  = -5' i n  f i g .  7 ) ,  t he  
r o l l  angle would be kept near zero, thus holding the  maximum v e r t i c a l  l i f t  
force.  If the  accelerat ion build-up w a s  too s low (as fo r  an i n i t i a l  shallow 
dive y i  = -2.5' i n  f i g .  7 ) ,  t he  p i l o t  would r o l l  t he  vehicle so the  l i f t  vec- 
t o r  pointed down thereby pul l ing the  vehicle f a r the r  down in to  the  atmosphere. 

6 



A s  the  accelerat ion nears the  desired leve l ,  t h e  p i l o t  goes i n t o  a 
"hunting" or oscill.atory cont ro l  mode t o  search f o r  t h e  roll angle var ia t ion  
t o  hold the  accelerat ion near constant ( f i g .  7 ) .  The p i l o t  cannot control  
onto and hold the  desired accelerat ion leve l ,  primarily because the  roll angle 
t o  hold a given accelerat ion i s  continually changing. This i s  i l l u s t r a t e d  
with the  a i d  of f igure 8. On t he  upper portion of t he  f igure i s  shown the  
l i f t  force needed t o  keep the  vehicle i n  equilibrium f l i g h t .  This force i s  a 
function of t he  grav i ty  minus cent r i fuga l  forces .  A t  low forward ve loc i t ies ,  
1 g i s  needed t o  keep t h e  vehicle i n  equilibrium; a t  c i r cu la r  sa tel l i te  veloc- 
i t y  (V,), zero lift force i s  needed; and a t  the  supercircular ve loc i t ies ,  neg- 
ative lift i s  needed t o  keep the  vehicle i n  equilibrium. From the bottom of 
figure 8 it can be seen t h a t  fo r  an accelerat ion l e v e l  of 6 g the  r o l l  angle 
f o r  equilibrium f l i g h t  var ies  from about 105' a t  36,000 f p s  t o  about 75' a t  
lower ve loc i t ies .  A t  the  lower accelerat ion l e v e l  of 2 g there  i s  l e s s  avai l -  
able  aerodynamic force,  and the  roll angle fo r  equilibrium f l i g h t  var ies  from 
about 160° t o  20°. Prior  knowledge of t he  var ia t ion  of equilibrium r o l l  angle 
helped t h e  p i l o t  t o  judge t h e  vehicle r o l l  angle f o r  cont ro l  t o  t he  desired 
accelerat ion leve l ,  but t he  hunting osc i l l a t ion  w a s  always present.  

Time h i s to r i e s  of p i l o t  controlled runs a t  accelerat ion leve ls  of 2, 4, 
A s  the  accelerat ion l e v e l  increases the  fre- and 6 g a re  shown i n  f igure  9 .  

quency of the  hunting osc i l l a t ion  increases primarily because of the  increased 
magnitude of the  aerodynamic forces .  The p i l o t  uses t h i s  increased vehicle 
l i f t i n g  capabi l i ty  i n  making more rapid changes i n  the  t r a j ec to ry  (i .e . ,  
f i g .  g ( c ) )  as compared with slower changes that are made a t  the  low accelera- 
t i o n  l eve l s  ( i . e . ,  f i g .  9 ( a ) ) .  

P i l o t  ratings and performance data taken a t  various accelerat ion leve ls  
are shown i n  f igure 10. The p i l o t s  found it eas i e s t  t o  control  t o  the 3 g 
l eve l .  A t  lower accelerat ion l eve l s  t he  p i l o t s  indicated that too  much roll 
control  must be used because of r e l a t ive ly  small amount of t o t a l  force avai l -  
ab le .  On the  other hand, f o r  accelerat ion l eve l s  above 4 t o  5 g, t he  p i l o t s  
noted t h a t  small changes i n  r o l l  angle resu l ted  i n  la rge  changes i n  the  ve r t i -  
c a l  l i f t ,  and t r a j ec to ry  control  became too  sens i t ive .  The control  a t  the  
higher accelerat ion l eve l s  w a s  characterized by the  increased hunting f re -  
quency and, as shown i n  f igure  10(b) ,  an increase i n  accelerat ion e r ro r  away 
from the  desired l eve l .  

In  f igure 10 the  p i l o t  r a t ings  from the  dynamic runs are  compared with 
s t a t i c  runs.  Up t o  t h e  6 g l e v e l  there  i s  very l i t t l e  difference i n  the per- 
formance data .  The p i l o t s  indicated t h a t  a t  the  6 g l e v e l  the  dynamic runs 
were about 1/2 a p i l o t  r a t i n g  point harder t o  cont ro l  than the  s t a t i c  runs.  
The p i l o t s  noted, however, t h a t  t he  dynamic motions of t he  s i m u l a t o r  gave a 
more r e a l i s t i c  environment and greater  p i l o t  concentration w a s  required i n  
order t o  keep the  vehicle under control .  These observations on p i l o t  perform- 
ance up t o  the  6 g l e v e l  are i n  general agreement with previous s tudies  such 
as i n  reference 8. 
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P i l o t  Control of Range 

For t h i s  series of runs various guidance display configurations were 
investigated with each of the  following three  modes of s t a b i l i t y  augmentation. 

1. "Stabi l i ty  augmentation in ."  There w a s  rate damping about each of 
t he  r o l l ,  p i tch,  and yaw axes. 

2. "Roll rate damping out . ' I  The vehicle motions were undamped about the  
r o l l  axes, and r a t e  damping w a s  provided about t h e  p i t c h  and yaw axes. 

3. "Stab i l i ty  augmentation removed. No r a t e  damping w a s  provided about 
any vehicle axes. 

The general  guidance concept used i n  t h e  study i s  i l l u s t r a t e d  i n  f ig-  
ure 11. The guidance problem w a s  t o  maneuver the  vehicle onto an equilibrium 
gl ide t r a j ec to ry  (for  cp = +60°) which terminates a t  t h e  desired dest inat ion.  
An ordered var ia t ion  i n  v e r t i c a l  l i f t  force i s  necessary t o  f l y  onto and down 
the equilibrium gl ide  path.  This v e r t i c a l  l i f t  force determines the  magnitude 
of t he  r o l l  angle. 
determined by the crossrange ( r e f .  9). A s  shown i n  the  f igure,  t he  vehicle i s  
allowed t o  f l y  t o  one s ide u n t i l  the  crossrange t o  the  dest inat ion exceeds a 
reference envelope a t  which time the  sign of the  r o l l  angle i s  reversed. T h i s  
crossrange information i s  displayed t o  the  p i l o t  on a d i a l  i n  a normalized 
form (crossrange t o  go/Vz). A t yp ica l  rol l -angle  h is tory  i s  shown on t h e  f ig-  
ure with three r o l l  reversals  corresponding t o  the  crossrange reversa l  po in ts .  
With t h i s  crossrange control  method, the  t r a j ec to ry  converges t o  the  

The sign of the  roll angle ( i . e . ,  r i gh t  or l e f t )  w a s  
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Sketch (a) 

Pilot interpolates 
to determine velocity 
on desired pa th  

dest inat ion as shown. The 
a b i l i t y  of t he  p i l o t  t o  guide 
during en t ry  using t h i s  cross- 
range control  concept with var- 
ious types of downrange guidance 
display arrangements w i l l  be 
i l l u s t r a t e d .  

Range-to-go display.-  The 
display t h a t  w a s  used t o  show 
range control  information i s  
shown i n  f igure  12 .  The four 
quant i t ies ,  range t o  go, veloc- 
i t y ,  acceleration, and acceler- 
a t ion  r a t e ,  were mechanized on 
a 5-inch cathode-ray tube with 
the  indicators  driven by analog 
computer voltages. (See 
sketch (a).) This display has 
l i n e s  drawn between the  range 
and ve loc i ty  sca les .  ?"ne l i n e s  
represent the desired veloci ty  , 
as a function of t he  range t o  
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go, for  an equilibrium gl ide  t r a j ec to ry  t o  the  t a r g e t .  I n  e f f ec t ,  these l i n e s  
give the  p i l o t  a let-down schedule of veloci ty  versus range t o  go t o  follow so 
t h a t  the  vehicle a r r ives  a t  the  dest inat ion with the  proper veloci ty .  To con- 
t r o l  onto the  desired path, the p i l o t  compares the  ac tua l  vehicle veloci ty  
with the  desired veloci ty  and then f l i e s  an accelerat ion pa t t e rn  so as t o  
achieve the  desired vehicle veloci ty .  When t h i s  i s  accomplished, t he  space- 
c r a f t  i s  on the  equilibrium gl ide path and the  r o l l  angle can be control led 
near t60° (the equilibrium gl ide value) throughout t he  r e s t  of t he  t r a j ec to ry .  

A t y p i c a l  time history.  of a p i l o t  controlled t r a j ec to ry  w i t h  t h i s  display 
i s  shown i n  f igure 13. The difference between the  ac tua l  and desired veloci ty  
(veloci ty  e r ror  on f i g .  13) i s  shown t o  vary from about 11,000 fps  t o  3,000 f p s .  
This f i n a l  e r ror  i n  veloci ty  represents an end-point e r ro r  of about 39 miles 
downrange. The end-point e r ro r  resu l t ing  from t h i s  range control  technique 
never exceeded about 40 miles, which i s  close t o  the  maximum resolut ion capa- 
b i l i t y  of t he  range-to-go display. 

The p i l o t  ra t ings  with t h i s  range-to-go display were as follows: 

Mode of short-per iod augmentat ion Average p i l o t  r a t ing  

S t a b i l i t y  augmentation i n  
R o l l  augmentation out 
S t a b i l i t y  augmentation out 

5- 3/4 
6 
6- 1/2 

With s t a b i l i t y  augmentation in ,  the  p i l o t ' s  t ask  w a s  primarily t o  scan the  
r o l l  angle, acceleration, veloci ty ,  and range-to-go displays and e f f ec t  t he  
appropriate vehicle control .  Because of t he  degree of concentration and s k i l l  
required t o  f l y  t h e  vehicle,  the  p i l o t s  f e l t  t h a t  t h i s  display arrangement 
should only be considered fo r  an emergency s i tua t ion  and w a s  not sa t i s fac tory  
for  normal operation. 

With the  r o l l  dampers out, the l e v e l  of d i f f i c u l t y  of t he  p i l o t ' s  t ask  
was increased. In  t h i s  case the  p i l o t  w a s  required t o  f l y  a r o l l  accelerat ion 
command system ra ther  than the  roll r a t e  command system. A s  shown i n  f igure 5, 
t he  p i l o t  i s ,  i n  e f f ec t ,  control l ing a sixth-order system. Observing s i x  
pieces of information and applying the  appropriate control  ac t ion  i s  a demand- 
ing task .  
play and decide upon a desired accelerat ion leve l ,  then f o r  t h e  next minute or 
so hold the  vehicle near t h i s  desired accelerat ion value. 
60 seconds the  p i l o t  would repeat h i s  scan of t he  range and veloci ty  displays 
t o  decide whether a new accelerat ion l e v e l  w a s  required.  

The p i l o t ' s  usual routine w a s  t o  scan the  range and veloci ty  dis-  

About every 30 t o  

W i t h  dampers inoperative it w a s  necessary for t he  p i l o t  t o  include i n  h i s  
scan pa t te rn  the  p i t ch  and yaw rate indicators .  The rate meters provided the  
primary cue fo r  damping the  vehicle osc i l la t ions  ra ther  than  the  imposed 
motion cues. The technique used w a s  t o  make one correct ive input about each 
ax is  i n  t u r n .  The control  task  with a l l  dampers out demanded the  p i l o t ' s  fu l l  
a t t en t ion  but ,  nevertheless, it w a s  possible,  as shown by the time h is tory  of 
f igure 13, fo r  t h e  p i l o t  t o  successfully control  the  t r a j ec to ry  with t h i s  type 
of guidance display. In  a l l  cases, t he  vehicle a r r ived  within about 40 miles 
of t h e  desired dest inat ion.  
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- displa2.- ~- A ve loc i ty  command w a s  presented as a 
range t o  go along the  equilibrium gl ide t r a j ec to ry .  

Veloc i ty  The display i s  schematically shown i n  
sketch ( b ) .  Using t h i s  display, 
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Sketch (b) 

t he  p i l o t  did not have t o  in t e rp re t  
between the  range-to-go and veloci ty  
sca les .  In  t h i s  case the  p i l o t  w a s  
e f fec t ive ly  control l ing a f i f th-order  
function. 

A t yp ica l  t i m e  h i s tory  of a p i l o t  
controlled t r a j ec to ry  resu l t ing  from 
t h i s  display i s  shown i n  figure 14. 
difference between the  ac tua l  and com- 
mand ve loc i t i e s  (veloci ty  e r ro r  on 
f i g .  14) i s  shown t o  vary from the  in i -  
t i a l  value of about 11,000 f p s  t o  a 
f i n a l  value of 1,000 f p s .  This f i n a l  
e r ror  resu l ted  i n  an end-point e r ro r  of 
about 13  miles. The maximum range e r ror  
with t h i s  display w a s  about 20 miles. 

'&e 

The double-pointer d i a l  instrument 
as wel l  as the  scope display shown i n  
the  sketch indicated the  commanded 

veloci ty .  
t he  various modes of short-period s t a b i l i t y  augmentation and t h e  veloci ty  
command displays the  p i l o t  ra t ings  were as follows: 

The p i l o t s  showed no preference fo r  e i the r  type of display.  For 

Mode of short-period augmentation - Average p i l o t  ~ r a t ing  

S t a b i l i t y  augmentation i n  
Roll augmentation out 
S t a b i l i t y  augmentation out 

4 
4- 1/2 
5-3/4 

When the  ve loc i ty  command display w a s  used, the  p i l o t  ratings were about 1-1/2 
points  b e t t e r  than ra t ings  f o r  t he  range-to-go displays.  The reason f o r  these 
ratings w a s  t h a t  t he  veloci ty  along the  desired path w a s  indicated d i rec t ly ,  
so  by watching t h e  r e l a t i v e  r a t e  of change between the  ac tua l  and desired 
ve loc i ty  indicators ,  t he  p i l o t  could readi ly  obtain lead information t o  judge 
the  proper accelerat ion l eve l .  
p i l o t s  considered t h i s  display arrangement unsat isfactory fo r  normal operation 
and sui table  only f o r  emergency s i tua t ions .  

The task  w a s  s t i l l  demanding though, and, the 

Acceleration command display.-  In  t h i s  display,  t he  p i l o t  w a s  given an 
accelerat ion command computed from the  equilibrium gl ide accelerat ion and a 

~ 

constant times the  difference i n  ac tua l  veloci ty  from the command veloci ty .  
This display i s  shown i n  sketch ( c ) .  

This display gives the  p i l o t  one order of lead information over t he  com- 
mand veloci ty  display.  
fourth-order function. 

In  t h i s  case the  p i l o t  i s  i n  e f f ec t  control l ing a 
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A typ ica l  en t ry  time h is tory  with 
t h e  p i l o t  using t h i s  display i s  shown i n  
f igure 15. The difference between the  
ac tua l  and command accelerat ion (accel- 
e ra t ion  e r ro r  on f i g .  15) i s  shown t o  
vary from an i n i t i a l  value of 3.3 g t o  a 
f ina l  value of about 1/2 g . The f i n a l  
range e r ro r  w a s  found t o  be strongly 
a f fec ted  by the  value of t h e  gain K1. 
When t h i s  gain w a s  large near t h e  end of 
t ra jec tory ,  t he  vehicle could usually be 
flown within about a mile of t he  des t i -  
nation. It i s  in te res t ing  t o  note from 
t h e  time h is tory  t h a t  hunting osc i l la -  
t i ons ,  similar t o  those encountered when 
the  p i l o t  t r i e d  t o  hold a constant g 
leve l ,  were present during these runs. I 

For the  double-pointer d i a l  instru-  
ment as w e l l  as the  scope display of 
command accelerat ion information, the  
p i l o t  preferred an instrument t h a t  dis-  
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Sketch ( c )  
played-the higher g l eve l s  toward t h e  bottom of the  scale (such as with the  
scope presentation) t o  correspond with the  increasing g f o r  diving f l i g h t  i n  
t he  atmosphere. 

The p i l o t  ra ted  the  command accelerat ion displays as follows: 
Mode of short-period - .  augmentation .~ 

S t a b i l i t y  augmentation i n  
R o l l  augmentation out 
S t a b i l i t y  augmentation out 

The p i l o t s  r a t ed  t h e  accelerat ion com- 
mand display about 3/4 point b e t t e r  than  the  
veloci ty  command display.  P i lo t  opinion 
indicated t h a t  with s t a b i l i t y  augmentation 
t h i s  display arrangement i s  sa t i s f ac to ry  fo r  
normal operation. Without s t a b i l i t y  augmen- 
t a t ion ,  they considered t h i s  arrangement 
su i tab le  only fo r  emergency operat ions . 

Acceleration-rate cormnand display.- An 
accelerat ion-rate  cormnand i s  computed from 
the  equilibrium gl ide accelerat ion r a t e  and 
a constant times the  difference between 
vehicle accelerat ion and t h e  command accel- 
e ra t ion .  
This display gives the  p i l o t  one order of 
lead  information over t he  accelerat ion com- 
mand display. I n  t h i s  case the  p i l o t  i s  
e f f ec t  ive ly  c ontr  o l l ing  a th i rd-  order 
f'unction. 

The display i s  shown i n  sketch (a ) .  

Average p i l o t  r a t ing  

3- 114 
4 
5 

Acce le ra  t i on 
r a t e  
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A t y p i c a l  t i m e  h i s tory  fo r  a p i l o t  using t h i s  display i s  shown i n  
f igure 16.  The difference between the  ac tua l  and command accelerat ion r a t e  
(accelerat ion-rate  e r ro r  on f i g .  16) i s  shown t o  vary from an i n i t i a l  value 
of -0.1 g/sec t o  a f i n a l  value of about -0.05 g/sec. The f i n a l  range e r ro r  
could be reduced t o  about 1 m i l e  if  la rge  gains  were used near t he  end of t he  
t r a j ec to ry  . 

The double-pointer d i a l  instrument as w e l l  as the  scope display indicated 
the  command accelerat ion-rate  information. The or ien ta t ion  i n  both of these 
instruments was considered sa t i s f ac to ry  by the  p i l o t s  because a dive i n t o  the  
atmosphere corresponds t o  an increasing accelerat ion rate toward the  bottom 
of t he  instrument. The p i l o t s  rated t h e  command accelerat ion rate displays 
as follows: 

Mode of short-period - augmenTation _ _  - Average p i l o t  r a t ing  ~ 

S t a b i l i t y  augmentation i n  
Roll augmentation out 
S t a b i l i t y  augmentation out 

3 

4- 1/2 
3- 1/2 

The p i l o t  ra t ings  f o r  the  accelerat ion-rate  command display were about 1/2 
p i l o t  ra t ing  point b e t t e r  than those fo r  t he  accelerat ion command display. 
The p i l o t s  consider t h i s  display and control  arrangement sa t i s fac tory  f o r  
normal operation with s t a b i l i t y  augmentation and unsat isfactory fo r  normal 
operation without s t a b i l i t y  augmentation. 

Roll-angle e r ro r  -~ - -  display.-  This display gives the  p i l o t  one order of lead 
This display arrange- 

ment i s  shown i n  sketch ( e ) .  The magnitude of t he  
command r o l l  angle i s  determined by range t o  the 
dest inat ion and the  s ign of the  command r o l l  angle 
i s  determined by the  crossrange e r ror  i n  a manner 
similar t o  the  method of reference 9 .  

information over t he  accelerat ion-rate  command display.  

-'- 
Sketch ( e )  

A t yp ica l  time h is tory  fo r  a p i l o t  using t h i s  display i s  shown i n  f ig-  
ure 17. The rol l -angle  e r ror  during t h i s  run i s  shown on the  f igure .  A t  
about 1-1/2 minutes a f t e r  t he  start  of t he  run a r o l l  reversa l  command from 
+looo t o  -looo can be seen. Because there  i s  no r o l l  damping i n  t h i s  par t ic -  
ular run, t he  p i l o t  made the  r o l l  reversa l  slowly s o  as not t o  exci te  t he  
vehicle short-period motions. 
w a s  t ry ing  t o  f l y  a constant command roll angle, he held the  vehicle roll 
a t t i t u d e  t o  within about 20' of the  command value. 

During the  port ion of t he  run when the  p i l o t  

The p i l o t s  ra ted  t h e  roll-angle e r ro r  display as follows: 

Mode of short-period augmentatidn Average p i l o t  r a t ing  ~. 

S t a b i l i t y  augmentation i n  2- 3/4 
Roll  augmentation out 3 
S t a b i l i t y  augmentation out 4 
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With a l l  dampers i n  operation the p i l o t ' s  task w a s  t o  n u l l  t he  rol l -angle  
e r ro r .  This task w a s  simple and required very l i t t l e  learning. With dampers 
removed it w a s  necessary fo r  t h e  p i l o t  t o  scan the  rol l -angle  e r ro r ,  p i t ch  
rate ,  and yaw ra t e ,  and t o  re fer  occasionally t o  the  a l t i t u d e  indicator .  With- 
out s t a b i l i t y  augmentation the  p i l o t s  ra ted  the  task  marginally unsat isfactory 
f o r  normal operation. 

Roll-rate e r r o r  display.- A r o l l - r a t e  e r ro r  s igna l  w a s  displayed as shown 

+K& -+corn' 

Sketch ( f )  

i n  sketch ( f )  . This display gives the  p i l o t  
one order of lead information over the  roll- 
angle e r ror  display.  I n  t h i s  case the  p i l o t  
i s  control l ing a simple f i r s t -o rde r  function. 

The p i l o t s  ra ted  t h e  r o l l - r a t e  e r ro r  
display as follows: 

Mode of short-period augmentation Average .- p i l o t  ra t ing 

R o l l  augmentation out 2- 3/4 
S t a b i l i t y  augment a t  ion  out 3- 114 

With s t a b i l i t y  augmentation removed, t he  p i l o t s  found t h i s  display satisfac- 
to ry  for  normal operation. 
r a t e  instruments ( r o l l - r a t e  e r ror ,  p i tch  rate, yaw r a t e )  and correct  the  rate 
about each ax i s  i n  t u r n .  

The p i l o t  t ask  w a s  simply t o  look a t  the  three 

Comments on range control  tasks . -  Figure 18 presents a p lo t  of p i l o t  
ra t ings  f o r  the  various guidance displays.  This figure shows the  var ia t ion  
of p i l o t s '  opinion of control l ing a sixth-order system with various amounts 
of lead information. The e f f ec t  of t he  display lead i s  showri t o  improve the  
p i l o t  r a t ing  by about 1/2 a p i l o t  r a t ing  point €or each order of increase i n  
lead information. Decreasing the  amount of lead information caused the  p i l o t  
t o  make larger  roll maneuvers t o  control  t he  t r a j ec to ry .  This i s  i l l u s t r a t e d  
i n  f igure 19 where the  r e l a t i v e  amount f u e l  used fo r  roll j e t s  i s  presented as 
a function of t he  guidance displays.  A s  the  p i l o t  i s  given l e s s  lead informa- 
t i o n  the  amount of f u e l  required i s  seen t o  increase.  This i s  apparently 
because the  p i l o t  i s  making b i g  maneuvers t o  determine experimentally the  
proper vehicle roll angle ra ther  than having the  rol l -angle  command informa- 
t i o n  presented t o  him. Final ly ,  when the  p i l o t  i s  given no command informa- 
t i o n ,  w i t h  t he  range-to-go display, the p i l o t  instead of making many small 
corrections w a i t s  a longer time t o  see the  r e s u l t s  of each control  input and 
as a r e s u l t  uses l e s s  f u e l .  

P i l o t  Monitoring and Transit ion Tasks 

A simple p i l o t  monitoring concept w a s  devised (see appendix) t o  insure 
t h a t  t h e  vehicle did not inadvertently skip out of t h e  atmosphere a t  above 
c i rcu lar  veloci ty .  I n  ac tua l  operation the  purpose of such a monitoring 
system i s  t o  give the  p i l o t  information independent of the  primary guidance 



system with which t o  assess  the  f l i g h t '  s i t ua t ion .  
consis ts  of a l i g h t  t h a t  warns the  p i l o t  i f  the  primary system i s  guiding the  
vehicle t o  an undesired skip out of t he  atmosphere. When the  l i g h t  goes on 
the  p i l o t ,  using back-up information (a t ta ined  from simple accelerometer and 
gyros, e t c  .), can take over t he  control  and maneuver onto a new safe 
t ra j e c t ory . 

In  t h i s  pa r t  of t he  study it w a s  assumed t h a t  t he  p i l o t  w a s  given primary 
guidance information on the  rol l -angle  e r ro r  indicator  and that back-up infor- 
mation w a s  used for  t h e  warning l i g h t  and the  accelerat ion-rate ,  accelerat ion,  
velocity,  and range-to-go displays.  Various t r a j e c t o r i e s  were programmed t h a t  
would skip the  vehicle out of t he  atmosphere. The p i l o t  would f l y  these tra- 
j ec to r i e s  u n t i l  t he  warning l i g h t  went on. 
recover from the  undesired t r a j ec to ry  by r o l l i n g  the  vehicle f u l l  l i f t  down so  
as t o  dive deeper i n t o  the  atmosphere. The p i l o t  would then use one of t he  
designated display arrangements fo r  control l ing the  vehicle during t h e  r e s t  of 
the  run. In  these runs the  monitoring system w a s  evaluated and the various 
display arrangements were used. 

display t o  the  back-up displays a re  shown i n  f igure  20. 
vehicle would have skipped out of the  atmosphere above c i rcu lar  veloci ty  i f  
the  p i l o t  had continued t o  obey the  primary guidance information. Figure 20(b) 
i l l u s t r a t e s  t he  p i l o t ' s  a b i l i t y  t o  control  using accelerat ion command informa- 
t i o n  a f t e r  t r a n s i t i o n  f rom the  skip-out t r a j ec to ry .  The p i l o t ' s  a b i l i t y  t o  
t r ans fe r  t o  the  accelerat ion-rate  command display, t he  veloci ty  command dis- 
play, and the  range-to-go display w a s  a l s o  investigated.  In  each case the  
p i l o t  had very l i t t l e  d i f f i c u l t y .  
subsequent guidance control  task were about 1/2 a p i l o t  r a t ing  point worse 
than the  ratings given previously when the  p i l o t  used the  same display 
throughout a run. . 

This monitoring device 

A t  t h i s  time the  p i l o t  would 

Typical t r a j e c t o r i e s  w i t h  a p i l o t  t ransfer r ing  from the  primary guidance 
In  each case the  

The p i l o t  r a t ings  for the  t r a n s i t i o n  and 

CONCLUDING REMARKS 

The r e s u l t s  of t h i s  study i l l u s t r a t e  several  considerations i n  t h e  p i l o t  
control  of a l i f t i n g  en t ry  capsule. 

This study shows t h a t  control  t o  a given accelerat ion l e v e l  i s  acceptable 
f o r  emergency entry operations. The p i l o t  control  response i s  characterized 
by small hunting osc i l l a t ions  about the  given accelerat ion l e v e l  and the  
r e s u l t s  indicate  a preference fo r  control l ing t o  an accelerat ion near t he  
3 g l eve l .  

The r e s u l t s  of t h i s  study i l l u s t r a t e  t he  e f f ec t  of various lead- 
information displays on the  p i l o t ' s  a b i l i t y  t o  perform a range control  t a sk .  
It i s  concluded t h a t  displays which give only basic  veloci ty  and range-to-go 
information are unsat isfactory f o r  normal operation; whereas display which 
includes roll rate or roll-angle c o m n d  information a re  sa t i s fac tory .  

14 



For t h e  vehicle used i n  t h i s  study, failure of short-period s t a b i l i t y  
augmentation increased the p i l o t ' s  t asks  but  did not s ign i f icant ly  a f f ec t  t he  
p i l o t ' s  a b i l i t y  t o  reach t h e  desired dest inat ion.  

A simplf: method of p i l o t  monitoring t o  insure that the  vehicle does not 

Successful pi lot-control led t r ans i t i ons  from skip-out 
skip out of the  atmosphere was  investigated and the  r e s u l t s  indicate  t h a t  such 
a system i s  feas ib le .  
t r a j e c t o r i e s  t o  safe t r a j e c t o r i e s  were documented. 

Ames Research Center 
National Aeronautics and Space Administration 

Moffett Field,  C a l i f . ,  June 11, 1964 



APPENDIX 

CONCEPT O F  SKIP-OUT MONITOR 

This appendix out l ines  the  monitoring system which w a s  used i n  th i s  
simulation and describes the  possible hardware implementation of t h i s  system. 

The objective of t he  monitoring system i s  t o  insure t h a t  the  p i l o t  w i l l  
never l e t  t he  vehicle skip out of t he  atmosphere above c i rcu lar  veloci ty .  
The system works as follows: A l i g h t  goes on a t  the  last  possible moment when 
a roll control  maneuver, t o  f u l l  negative l i f t ,  w i l l  j u s t  keep the  vehicle 
from leaving t h e  atmosphere a t  above c i r cu la r  ve loc i ty .  The hardware f o r  t h i s  
system i s  simple, r e l i a b l e ,  and independent of t he  primary guidance system. 

The basis f o r  t h i s  monitoring system i s  i l l u s t r a t e d  i n  f igure  21 which 
shows t r a j e c t o r i e s  out of the  atmosphere fo r  a vehicle holding negative l i f t  
(L/D = -0 .4) .  
vehicle w i l l  skip out above c i rcu lar  ve loc i ty  regardless  of a t t i t u d e .  It 
should be noted t h a t  these boundaries a re  three-dimensional and a re  defined by 
acceleration, accelerat ion r a t e ,  and ve loc i ty .  From t h i s  f igure it can be 
seen t h a t  a l i nea r  approximation t o  these boundaries can be of the  form: 

These t r a j e c t o r i e s  represent boundaries beyond which the  

= Kv(V - Vc)  - “Limit 

This equation w a s  used i n  t h i s  study s o  t h a t  a warning display w a s  act ivated 
when the  vehicle accelerat ion w a s  below t h e  computed accelerat ion l i m i t .  The 
values of Kv and K& 
out giving false warning when the  primary guidance system w a s  operating nor- 
mally. The values of Kv and K& could have conceivably been taken f romthe  
slope of t he  curves i n  f igure 21  but it w a s  found t h a t  two important fac tors  
made empirical adjustments necessary. These were: (1) the  adjustments due 
t o  l i nea r i za t ion  of the  skip-out boundaries, (2)  t h e  adjustment due t o  the  
time required t o  roll t o  fu l l  negative l i f t .  
Kv = 0.00053 g/Qs and IC& = 11 g/(g/sec) were found sa t i s fac tory .  

were empirically adjusted t o  give adequate warning with- 

Thus the  values 

The implementation of t h i s  equation requires  the  measurement of acceler-  
a t ion,  accelerat ion rate, and veloci ty .  It appears feas ib le  t h a t  the  accel-  
e ra t ion  and accelerat ion rate can be measured with a s ingle  strapped-down 
accelerometer. The measurement of ve loc i ty  though i s  of the  form: 

r t  

Because of t he  small f l ight-path angles charac te r i s t ic  of manned entry 
t r a j ec to r i e s ,  t he  time in t eg ra l  of drag accelerat ion i s  suf f ic ien t  t o  obtain 
an approximate measurement of incremental veloci ty  changes. The measurement 
of t he  drag accelerat ion (aD)  which i s  needed i n  order t o  calculate  vehicle 
veloci ty  can be obtained from the  strapped-down accelerometer; however, the  
mounting of the  instrument r e l a t ive  t o  the  spacecraft  i s  an important 
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consideration. 
posi t ion t o  minimize uncer ta in t ies  i n  the measurement of drag accelerat ion.  
On the  top of t he  figure the  measured accelerat ion i s  shown as a function of 
t he  or ientat ion of t he  measurement axis .  Uncertainties i n  the  trim angle a re  
shown t o  a f f ec t  the  measured accelerat ion.  On the  bottom of the  f igure the  
r a t i o  of measured accelerat ion t o  drag acceleration, t he  quantity of i n t e re s t ,  
i s  shown. 
symmetrical body axis w i l l  allow a measurement d i r e c t l y  r e l a t ed  t o  t he  drag 
accelerat ion and w i l l  minimize the  e f f ec t  of uncertaint ies  i n  t he  t r i m  angle 
of a t tack .  

Figure 22 i l l u s t r a t e s  t he  method of finding the  bes t  mounting 

It can be seen t h a t  a mounting posi t ion of about +45O from the  

From the  foregoing discussion, it appears feas ib le  f o r  t he  p i l o t  t o  use 
a strapped-down accelerometer and a warning display t o  monitor skip-out tra- 
j ec to r i e s .  Such a system would be independent of t he  primary guidance system. 
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TABLE I.- PILOT OPINION RATING SCHEDm 

Unsatisfactory 5 
6 

I 
operat ion 

Adjective Numerical 
ra t ing  r a t ing  

Unacceptable fo r  normal operation ' Doubtful Ye s 
Acceptable f o r  emergency condition 

only' ~ Doubtful ~ Yes 

Description 

Catastrophic 

Can be 
landed 

Primary 
mission 

accomplished 

10 Motions possibly violent enough t o  
prevent p i l o t  escape No No 

1 Excellent, includes optimum Ye s 
2 Good, pleasant t o  f l y  Ye s 
3 Satisfactory,  but with some mildly 

Normal 
operat ion Sat isfactory 

unpleasant charac te r i s t ics  Ye s 

Yes 
Ye s 

Yes 

Unacceptable even f o r  emergency 1 Unacceptable 1 1 1 i: 1 Dougfd 
Unacceptable - dangerous 
Unacceptable - unc ont r ollable  No 

operat ion 

'Failure of a s t a b i l i t y  augmenter 
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(a) Rate damping system. 

t 

Reaction control output 

(b) Direct  command system. 

Figure 1 .- Simulated r eac t ion  c o n t r o l  systems. 
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A-30561 
Figure 2 . - P i l o t  display.  



rc 
W Figure 3 .- Ames five-degrees-of-freedom simulator and associated computing equipment. 
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Figure 4 .- Position of p i l o t  with respect t o  motion simulator. 
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Figure 5.- Simplified block diagram of the control system and the entry dynamics i n  the plane of the 
t ra jectory.  
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Figure 6.- Pitch and yaw oscillations with random disturbances. 
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(a) Variation of a l t i t u d e  with ve loc i ty .  
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Figure 7 .  - Concluded. 
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L i f t  and associated roll angle required t o  hold an  en t ry  vehicle near 
equilibrium f l igh t ;  (L/D), = 0.48. 
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Figure 9.- P i lo t  control t o  various acceleration levels;  V i  = 36,000 fps, h i  = 300,000 f t ,  yi = -4.0'. 
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Figure 11.- Typical t r a j ec to ry  controlled onto subcircular (Cp = 60') glide path; xi = 1,800 miles, 
Vi = 36,000 OS, hi = 300,000 f t ,  T i  = -4.0'. 
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Figure 12.- Display f o r  con t ro l  of range w i t h  no command information. 
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Figure 13.- Time his tory of p i l o t  control with range display; s t a b i l i t y  augmentation out; Vi = 36,000 fps, 
h i  = 3OO,OOO f t ,  7i = -4.0°, xi = 1,800 miles. 
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Figure 14.- T W  his tory of p i lo t  control with command velocity display; s t ab i l i t y  augmentation out, 
vi = 36,000 fps, hi = 300,000 f t ,  y i  = -4.0°, xi = 1,800 miles. 
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Figure 15 .- Time his tory of p i l o t  control with command acceleration display; s t a b i l i t y  augmentation out, 
V i  = 36,000 fps,  h i  = 300,000 f t ,  yi = -4.0°, X i  = 1,800 miles. 



IO n ----d- - ,+ -- 0 
deg per sec - 10 

180 
Roll angle, 

deg 

Roll rate, 

O E  
/ 

-180 

A 

Acceleration, 4 - 
9 0 

-0.lr-T F l o s e c  

Acceleration rate 
error, g/sec 

Pitch rate, 'Ew++-+- 
deg per sec -1 

-10 Yaw rate, 
deg per sec 10 

Figure 16 .- Time his tory of p i l o t  control with command acceleration-rate display; s t a b i l i t y  augmentation 
O u t ,  V i  = 36,000 fps ,  h i  = 3OO,OOO f t ,  Ti = -4.0°, x i  = 1,800 miles. 
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